PIM-MOF Composites for Use in Hybrid High Pressure Hydrogen Storage Tanks

¹Doctoral Training Centre in Sustainable Chemical Technologies, University of Bath, BA2 7AY, UK
²Department of Chemical Engineering, University of Bath, BA2 7AY, UK
³Department of Chemistry, University of Bath, BA2 7AY, UK
⁴Haydale Composite Solutions, Charnwood Business Park, Loughborough, LE11 1QJ, UK
e-mail: L.T.Holyfield@bath.ac.uk; URL: http://www.bath.ac.uk/csct

Introduction
- Hydrogen has been proposed as a potential long term sustainable energy storage solution, particularly in light duty vehicles.
- The current industrial state of the art in hydrogen storage for vehicles is compression [1]. However this technology presents some major issues:
 - Relies on pressures as high as 70 MPa to store enough hydrogen for a 500 km range [1].
 - Uses very expensive materials to achieve the lightness and pressure resistance required.
 - Fails to meet the U.S. DoE’s On-board Hydrogen Storage Goals [2].

![Figure 1: 70 MPa hydrogen tank used in the Toyota Mirai fuel cell vehicle [3]](image)

- One of the routes to hydrogen storage that is being pursued is storage by adsorption, which uses nanoporous materials to physically bond hydrogen, so increasing the volumetric density.
- The aim of this project is to determine whether a composite material of the well known adsorbents PIM-1 and MOF-5 is feasible, and if so, if a hybrid tank featuring this material as a liner could provide a benefit over current hydrogen storage solutions.

Metal Organic Framework (MOF-5)
- MOF-5 is composed of Zn₄O₄ clusters attached by 1,4-benzenedicarboxylate linkers.
- Has isoreticular topology (alternatively known as IRMOF-1).
- Industrial interest from Ford, General Motors, BASF [4].
- Rouquerol BET surface area of 3508 ± 129 m² g⁻¹ (N₂ isotherm at 77 K).
- Highly microporous pore size distribution; Horvath-Kawazoe (HK) model gives a modal pore size of 0.9 nm.

![Figure 2: Schematic of a hybrid high pressure tank featuring an adsorbent liner](image)

Polymer of Intrinsic Microporosity (PIM-1)
- Bright yellow powder is soluble in polar aprotic solvents (e.g. chloroform, THF).
- Initially synthesised using the optimised method of Song et al. [5], although this resulted in a material that formed brittle, cracked films (Mₙ = 9765 g mol⁻¹, PDI = 2.66).
- Synthesis using the original method of Budd et al. [6] resulted in a better quality PIM (Mₙ = 76261 g mol⁻¹, PDI = 2.53).
- TGA under N₂ flow determines thermal stability up to ~ 430 °C.
- Helium pycnometry gives skeletal density of 1.24 g cm⁻³.
- Rouquerol BET surface area = 621.2 ± 3.0 m² g⁻¹ (N₂ isotherm at 77 K).
- Pore size distribution reveals more than half the pore volume is microporous (HK total pore volume = 0.463 cm³ g⁻¹).

PIM-1 Film
- Synthesised through solvent casting of PIM-1 in chloroform.
- Rouquerol BET surface area of 330.9 ± 5.2 m² g⁻¹ (CO₂ isotherm at 273 K).
- Microporous analysis with N₂ difficult due to mass transfer limitations (slow equilibration).

![Figure 3: Hydrogen adsorption isotherm at 77 K for MOF-5](image)

![Figure 4: Chemical structure of PIM-1](image)

![Figure 5: High Pressure (160 bar) Hydrogen adsorption isotherms at 77 K for PIM-1 powder (black) and PIM-1 film (red)](image)

Future Work
- Synthesis of PIM-1/MOF-5 composite (in progress).
- Continued analysis of adsorbent properties of materials, including fitting to a model developed at the University of Bath to determine parameters such as adsorbate density and pore volume.
- Analysis of mechanical (tensile and flexural moduli), thermal (specific heat capacity, thermal conductivity) and binding properties of materials.
- Develop ‘rule of mixtures’-style correlations between composite content and properties.
- Design of hybrid hydrogen storage tank with a composite liner.

![Figure 6: PIM-1 film](image)

References