Sounds of the planet

Acoustic remote sensing and its uses in underwater environments

Tagged: polar

27 July 2014 - Ships passing in the night ...

  , , , , , , ,

📥  From the field

The small icebergs brought to the shore have fallen silent with the evening. The sun is currently hidden behind the 500-metre mountain just behind the base, and the beach is in shadows. What suddenly made these icebergs silent? Curious, of course, we came to investigate after some colleagues told us there was no noise ... (motivated by some aspects of our research, they had combed the beach looking for icebergs with the most bubbles to add to their end-of-work drinks ...) We take measurements in air and in water, and conclude it is a conjunction of the type of icebergs, the contrasts in temperature (or rather the absence: air and water are both close to 1 degree Celsius), and the very calm seas ... We also take some samples to measure in the laboratory ...

Traffic in the Bay of White Bears has increased tonight: there is a large cruise ship at anchor in the deepest part (around 200 m deep), and we can hear the noise of its engines over the several kilometres of water. Another ship (further left in the picture), much smaller, decided to moor very close to where we had deployed an acoustic-recording buoy ... What about the noise it will make, covering what we want to measure over the coming months?

They are Norwegian hydrographers, though, so we do not really begrudge them: they must be doing exciting work too. And we all "comrades-in-arms": we all want to understand more about the polar regions and their climate. Thinking a bit more about it, our first buoy has been there for several months already. The second buoy, 25 metres away, will not start recording until November. So a few hours of engine noise will not really affect our different measurements ...

Ships passing in the night? If only ... One of them has been above our buoy for more than 24 hours now ...

Ships passing in the night? If only ... One of them has been above our buoy for more than 24 hours now ...

 

26 July 2014 – No birds, please …

  , , , , ,

📥  From the field

After the last days, we have plenty of field data to analyse and more experiments to run and test different theories. Is the noise coming from the bubbles? From the cracking? What influences how loud it is? Is it the temperature of the air? Of the water? Of the ice itself? Does it depend on how much salt there is in the water? And how does the noise from one iceberg combine with the noise of the others to give what we measure in the field?

This acoustic experiment fits nicely on a table top, and measures the noise of individual growlers as they melt ...

This acoustic experiment fits nicely on a table top, and measures the noise of individual growlers as they melt ... The box on the left contains hydrophones for use in the field, listening to icebergs (or anything underwater) in stereo.

This makes a lot of parameters to investigate. The high-speed photography rig is used fully, day and late into the night, and we have another small tank to run tests in.  The second part of our laboratory is actually in our dormitory: I annexed the desk and put a small aquarium on top. The hydrophone measuring the sound close to melting ice is connected to different bits of kit, and everything is recorded on my computer for later analyses. Melting full growlers in different conditions requires as little background noise as possible. This is not always possible in the local conditions: the station was built to be a polar base, not an underwater acoustics lab, and it is mounted on stilts (to separate from the snow and cold permafrost, in winter). This means that people walking in the corridor outside make the floor move. Doors closing too fast because of the wind do not help. But the main culprits are outside: squabbling geese or cheerful snow buntings settling just below the window.

Snow buntings are the only songbird in Svalbard.  The same size as sparrows, they are a delight to see and hear. But what do they need to sing loudest when the experiments are running :-) ?

Snow buntings are the only songbird in Svalbard. The same size as sparrows, they are a delight to see and hear. But why do they need to sing loudest when the experiments are running?

 

 

25 July 2014 – Fifty shades of blue

  , , , , ,

📥  From the field

We do not do as much field work as I expected at the beginning, because of the weather and because we need to do laboratory experiments to check different theories. But today I am happy: the weather is cooperating, and we are away in the field once again.

The glacier has changed over the last days, with more and more blue ice and blue icebergs. Ice from the top of the glacier is white, and becomes blue when it is compressed at the base of the glacier. The front of Hansbreen is gleaming in different shades of blue today, meaning more ice from the base has been exposed and is now melting. There are large blue icebergs all around us.

A typical blue iceberg, calved from the bottom of the glacier. It is around 3 m high above the water: there is 80% more below the water line ...

A typical blue iceberg, calved from the bottom of the glacier. It is around 3 metres above the water line: there is 80% more below ...

The icebergs in the fjord have various shades and various shapes. Some of them are so flat that I would like to step on them (too dangerous to even think about, of course, as their bobbing in the waves reminds us how unstable they are). A Canadian friend sent me the link to a video showing a large iceberg capsizing: very illustrative, even though I prefer watching it with the sound off. Other icebergs look like melting bouncy castles, complete with high towers and oscillations. Some are smudged with grey or brown: remnants from the base of the glacier, gravel or mud taken with the ice as it moves slowly but ineluctably. Sometimes, the icebergs still have huge stones caught into the ice. This one (below) looks a gruyere cheese: the holes were once occupied by round stones, which fell into the water as the ice melted. Closer to the Station, on our way back, some of the icebergs with the most melting behind them look like swans: all white with slender necks …

Gruyere iceberg: the holes had large stones in them, from the bottom of the glacier. This was the base of the iceberg, which has now capsized.

Gruyere iceberg: the holes had large stones in them, from the bottom of the glacier. This was the base of the iceberg, which has now capsized.

During our first deployment of DAB, a little auk swam enquiringly toward us, curious of what we were doing. After seeing it was “just science”, it swam further away, and started ducking its head into the water at regular intervals to find some food.

Once back on shore, late into the night, I have time to glance outside whilst downloading the data from the day. Some sort of eagle is swooping over one of the barnacle goose chicks by the melt pond, and even the parents (usually aggressively protective of their young) do not seem ready to approach. But the chick runs to water … and apparently to safety, as the eagle now flies higher and finally leaves off …

 

 

24 July 2014 – Glacier ice cubes and glacier work

  , , , , ,

📥  From the field

Yesterday saw another successful deployment of DAB, the Directional Acoustic Buoy to track where underwater noise comes from exactly. Each survey starts in the same way: zooming in the boat to the fjord with the glacier, jumping on the beach to set up the cameras on the hills, and jumping back in the boat to deploy the DAB and get measurements. Zooming is of course an exaggeration: getting away from the base is a cautious start, as the skipper needs to negotiate between rocky outcrops (not visible at high tides, but still there and dangerous) and sometimes icebergs, Crossing the open sea to the fjord cannot be done too fast if the waves are too high, or the wind in the wrong direction. And once into the fjord, we have to zigzag between icebergs of different sizes. Jumping out of the boat is also an exaggeration: the seabed is very steep, and we have to wait until the very last seconds for the water to be shallow enough, getting into the water and holding on to the boat before painstakingly pushing it on shore away from the waves and the tide. Then, we lumber up the hill in our immersion suits. But the view from the top is worth it …

From the hill where our cameras are deployed, we get wide views over the entire Hans Glacier and its fjord, covered with icebergs of different sizes.

From the hill where our cameras are deployed, we get wide views over the entire Hans Glacier and its fjord, covered with icebergs of different sizes.

Today, we successfully deployed the long-term buoy which will measure ambient noise as winter sets in. We programmed it to start taking measurements from 15 November until the batteries run out (which should be in March 2015). This way, the buoy will record the onset of the ice cover in the fjord, and hopefully when it starts to break up in spring. To celebrate these different achievements, Jarek breaks out the whisky he had brought with him from Longyearbyen. And I carve some ice cubes out from one of the iceberg samples we brought back to the base for our experiments …

In the confined space of our dormitory, we have managed to organise a small celebration of a series of successful deployments. The ice cubes in the “wee drams” are carved from fresh ice samples.

In the confined space of our dormitory (Grant squeezed into one of the bunks to take this picture), we have managed to organise a small celebration for a series of successful deployments. The ice cubes in the “wee drams” are carved from fresh ice samples.

 

 

23 July 2014 - Hump day

  , , , ,

📥  From the field

A few days ago, it was already “hump day”. This is a custom taken from long surveys on ships, where people use the analogy of the camel hump to mark the days “up”, toward the middle of the survey, or the hump, and the days “down”, where each day takes us closer to the end, but also to the return to normal life, to family and loved ones, to the favourite pub down the road or to the comforts of home and the choice of our own food or our own entertainments.

In the past, I have been on rather long surveys, for two months or more, and “hump day” is often marked by a more or less official (and more or less unbridled) celebration. Here, this is more of a muted affair. First, because our team of three is the only one for which this is “hump day”: the others are here for longer, or shorter, or started at different times. Second, because we luckily get on well together, and the Polish Polar Station is much more homely than a deep-sea vessel. I love going on ships, and the excitement of scientific discovery as we survey new grounds is hard to surpass. But one must admit that, after a while, we are still all bundled together for several weeks in very confined spaces, with hard work and very limited entertainment. And it’s impossible to “step outside” to be alone, or oneself, for a change.

Front entrance to the Polish Polar Station. The arrows point to features of interest: Biegun (North Pole = 1,452 km) = , Arctowski (South Pole) = 16,252 km, Longyearbyen (the nearest settlement) = 136 km. The mast is decorated with a knitted Polish flag: guerilla knitting taken to extreme latitudes.

Front entrance to the Polish Polar Station. The arrows point to features of interest: Biegun (North Pole = 1,452 km) = , Arctowski (South Pole) = 16,252 km, Longyearbyen (the nearest settlement) = 136 km. The mast is decorated with a knitted Polish flag: guerilla knitting taken to extreme latitudes.

The Polish station has access to the outside world: I can Skype with my family on a regular basis, receive and send emails and we also have access to satellite TV. Granted, the network speed is very slow: I sometimes see letters appearing on the screen 5-15 seconds after typing them, and Skype conversations often have to be audio-only because of the limited bandwidth. The satellite connection is sometimes down when the weather turns bad, or when the connection at the other end fails to recognise internet addresses (“bath.ac.uk: host cannot be resolved”). But this is still better than no connection, and being cut off from the rest of the world for months on end. We can follow the heat wave in Europe (and feel very happy for our own “heat wave”, with temperatures as high as 5 degrees), and other international affairs.

And, contrary to ships, the fact we do not work on shifts means we have more freedom to get a break every now and then. The Station has a well-stocked bookshelf. Most of it is in Polish, obviously, but there are other books given by visitors over the years, in other languages. A book by Julian Dowdeswell (a famous polar explorer and scientist, now based in Bristol) is on the same shelf as “The Guide to Mammals and Birds from Svalbard”, from the Norwegian Polar Institute, not to be confused with “The Guide to Flora and Fauna from Svalbard”, translated from Polish and giving the best directions for collecting and storing specimens, from plankton to parasites to larger sample. The TV is often switched on in the communal area, allowing us to see Harry Potter (in Polish), Iranian children’s programmes (one of the scientists here is learning Farsi in his spare time), or any satellite channel we please. Obviously, with the pace of work I haven’t had much time to watch it much (a few minutes at most). But, like the Opera in Sydney, knowing it’s there if you want to access it always makes us feel better.

Another factor that makes life better, even if working hard and being away from home for long, is the food. Here, we are lucky to have two chefs (Piotr and Daria), helped by a few scientists on roster duty each day. The food is varied, appetising, and includes both traditional Polish fare (from beetroot juice to beetroot soup to varied types of sausages) and different offerings (Chinese food two days ago, pancakes this morning, and even homemade pâté two weeks ago). The meals are set on the communal table, sitting 20 people at a time (there are often two sittings, when everybody is here) and leftovers are available in the fridge, for evening dinners (at no fixed time, although we all tend to meet around the coffee machine around 8-9 pm) and anytime cravings.

 

 

22 July 2014 – Pulled under by a mini-tsunami

  , , , , , , , ,

📥  From the field

7 am: The weather has cleared up and we can start field work again. According to Internet, we are in the sunshine. According to my own eyes, the clouds are still very low and all grey from one end of the horizon to the next. This morning, the beach was littered with small and big icebergs. Their clinking noise could be heard even from the base, 200 m away. After piling all the equipment in the boat,  we are going back to Hans glacier, first to set up the stereo cameras on the hill overlooking it, second to get more underwater measurements. After the rain of the last days, the glacier has melted a bit more, and there is a lot of ice, including blue ice, everywhere around (blue ice is more compressed ice, coming from the base of the glacier).

9 am: Just as we approach the beach, a loud bang can be heard, and we turn back in time to see parts of the glacier falling off. We have seen that before, and it is always spectacular. As blocks of ice fall into the water, they create long waves, which do not seem that bad from our place. We use the first ones to help haul the boat onto the beach. And then the big one comes in … It looms large very quickly, bringing a 5-tonne iceberg too close for comfort … And then the gravel below my feet is pulled down, and I feel sucked into the water deeper than I expected … Luckily, the Arctic immersion suit is once again very useful …

I should have known: mini-tsunamis are a common risk near glaciers, and like other tsunamis, their height increases as they reach shallower water. Here in this fjord, the seabed is very steep, so the waves increase only very close to the shore. In other places in the Arctic, they can crash big icebergs onto structures or small harbours (when the places are settled).

Not very fetching, but it does the job: the Arctic immersion suit is ideal for very cold water.

Not very fetching, but it does the job: the Arctic immersion suit is ideal for very cold water.

10 am: The stereo cameras were easy to set up, with practice, and we will gather pictures every 5 seconds for the several hours to come. During this time, we’ll be drifting with the freshwater outflow from the glacier, measuring the noise underwater and finding ourselves in the middle of a very large and noisy ice flow.

Ice, ice everywhere ... and we are in the thick of it, drifting for several hours in cold wind ...

Ice, ice everywhere ... and we are in the thick of it, drifting for several hours in cold wind ...

Icebergs, icebergs everywhere … We have to push the pointiest ones away from the rubber tubes of our boat. Icebergs make clunking noises as they move below the aluminium hull, or big thumps when colliding with us (more or less gently).

11am : we get close to a very nice iceberg, made of blue ice and roughly 15 m large. Sea gulls use it as a vantage point, and it has already started to melt in a variety of interesting shapes. The seabirds turn around us with interest, before flying back to their resting place. We take the paddles out to move away (without too much noise: this would be bad for the measurements), and a few minutes later, this iceberg capsizes several times … Lucky escape …

A big blue iceberg: it will capsize violently (and noisily) ten minutes later. The watching seagull at the top will be unfazed, and use the occasion to dive for more fish.

A big blue iceberg: it will capsize violently (and noisily) ten minutes later. The watching seagull at the top will be unfazed, and use the occasion to dive for more fish.

1 pm: The rest of the measurements get by without excitement, as we get colder and colder despite our warm clothing. The walk up the hill to recover the cameras is a good way to warm up (I am on polar-bear watch and carry the rifle and emergency radio, fortunately not too heavy).

3 pm: Back to the shore. Someone is waiting for us to point at a relatively less dense group of icebergs. With Grant, we jump down in the water for the last few metres, moving the icebergs by hand away from the boat so that we can beach it safely. We are back in time for a good lunch, and can relax later to the sound of Mozart on an old vynil from the station’s collection, in the communal room. Then it will be back to work, downloading the data, checking the dozens of emails that accumulated at work back in our respective institutions, and preparing for tomorrow’s deployment. The network is slow again (kilobytes/second) and most connections do not work well … Typing letters. I see them on the screen 5-10 seconds later …

Midnight:: The autonomous recorder is now ready for tomorrow, and we cleaned our hands from the lubricant used to waterproof all the joints and connections. Time for more work: the rain outside looks suspiciously like sleet but I am not going to investigate. It’s warm and cosy inside.

 

 

20 July 2014 – The wild side of Arctic life

  ,

📥  From the field

Conditions in the Arctic vary rapidly, and local ecosystems are very simple (no rodents or hares, for example, in this part of Svalbard) (no worms, no slugs, but a few insects). There are many other animals around, though, and they are mostly unaware that humans can cause a threat. In the case of polar bears, this is justified … (and before anyone asks, no, I have not seen a bear yet: just a pawprint on the beach once, and that’s as far as I am keen to go …)

The bay we are on is called Isbjjørnhamna, after the ice-breaker “Isbjørn” used in early 20th century expeditions. It also means the bay of the polar bears, and Jarek tells me that this is often used in winter by bears migrating from eastern to western Svalbard. The area was used by Norwegian hunters until the 1950s (when the station was built). Polar bear hunting is banned since 1973 in Svalbard, and only self-defence is allowed. Some bears are said to cross the ice-covered seas in winter to move all the way to Greenland … Impressive!

The Polish Polar Station has two big Arctic dogs, used to extreme weather and sometimes seen lazily soaking up the mist on the cold tundra, in the same way that dogs back home would soak up the sun on the lawn. They are used to warn of bears, although I was told one was eaten by a polar bear a few years ago … There are also plenty of geese, roaming around with a few fluffy chicks and being very protective. The first night, I heard a commotion outside before going to bed, and saw an Arctic fox running away with something small in its mouth, being pursued for a few metres by some angry geese. With seabirds, this is apparently their primary food source during the summer, and the local guidebook assures me they have plenty of food in this season.

Other animals roaming happily around us are reindeers: three of them can be seen happily munching on anything that grows, from lichen to moss to a few clumps of grass or even flowers. They are not disturbed by humans walking around, and they come and go at leisure around the bay.

One of the reindeers roaming around the station. Left and in the mist: Wilczekodden Peninsula, with its cross and open-air altar, erected in 1982.

One of the reindeers roaming around the station. Left and in the mist: Wilczekodden Peninsula, with its cross and open-air altar, erected in 1982 by the station's personnel

Seabirds come in all sorts, from black guillemots to eiders (I saw one flying across our boat this morning, or at least I think it was one), and little auks, nice small black-and-white birds with a short beak. Several of the scientists working at the station study them: the birds have one chick per brood, and one brood per year. Both parents take equal care of raising their young, often with the father staying in the nest after hatching whilst the mother moves around.  The scientists study prolactin, the hormone regulating bonding behaviour, and stress hormones. They could tell me everything about these birds’ migration patterns too: they travel to the deep sea far away, where they gorge on plankton …

Arctic geese in the mist – The weather turned to cold rain in the space of a few hours …

Arctic geese in the mist – The weather turned to cold rain in the space of a few hours …

 

 

16 July 2014 - More about the experiments

  , , , , ,

📥  From the field

Last time, I talked at length about the science, and why we are here. But it's not all work in the field. Arctic weather changes fast, and even the best forecasts (using data from the weather station 100 m away) are not as accurate as local scientists. By looking at the wind and the sea, they can predict much more accurately when it is worth going out, when we should think about going back home in a hurry, or when we can carry on ... Sometimes, in a bright blue sky, Jarek will say: "OK, in 30 minutes, we should start back". And once we have cut short the experiment, and started going home, we already see fast winds and increasing waves moving in ... That's field experience worth listening to.

When the weather is not as good, or just when we have plenty of iceberg samples to study in detail, we do experiments using two setups. Mine is simple, with a small tank and a high-precision hydrophone to record the noise from an iceberg as it melts, from start to finish. We keep our samples in the station's deep freezer, at -23 degrees (Celsius). The cook nicely put the frozen fish to one side, and we have the other half for all sorts of icebergs, cleanly packed and well separated.

Grant Deane, our American colleague (but originally from New Zealand), has designed and built a separate rig to take high-speed photographs of small samples of ice as they melt, and to record the very short bursts of noise they make each time a bubble escapes, or something else noisy happens.  To hold the tiny samples, Jarek Tegowski built a special holder, which adapts to the melting as the samples become smaller and smaller and smaller.

Combined visual/acoustic studies

Grant Deane (Scripps Institution of Oceanography), calibrating the visual/acoustic high-speed rig he built.

 

14 July 2014 – Starting the science

  , , , , ,

📥  From the field

The last two days have been very busy, starting with the first experiments and really testing our equipment for good.

Ice flow

Small and large icebergs flowing out from Hans glacier

Being in the field is always very nice, although life back home carries on as usual. The deadline for submitting papers to an international conference was today, and I finalised a paper with colleagues from Aberdeen and Liverpool on acoustic monitoring of impacts from marine renewable energies. Through several deployments in the challenging waters of Orkney, we tested devices and control areas at the European Marine Energy Centre and used different types of sonar to detect and track marine life, including seabirds (also seen on radar and confirmed by very experienced visual observers).

But what are we going to do here? Yes, we are going to listen to underwater noise from ice, and from glaciers. But why? And who cares? What are the reasons for this work, and how will it be applied later?

Noise underwater spans a large range of frequencies. The lower ones (a few tens of Hertz) can propagate for hundreds or even thousands of kilometres. They correspond to earthquakes or similar natural processes. The higher ones (up to several hundreds of kiloHertz) correspond to animal vocalisations (e.g dolphins) and man-made sonars. In the middle, there are all sorts of sources of noise: natural ones, like the weather (rain falling on the sea surface, waves crashing in the wind) or animal life (whales, fish, even shrimps), and artificial ones like sonars, industrial activities (seismic surveys, offshore building) or divers using acoustic modems. How much noise is there in the ocean already? How much can we make before becoming “noisy neighbours”?

We have answers to some of these questions, with emerging international standards and work done by different technical committees (e.g. the British Standards Institution in the UK: I am there as member of the Centre for Space, Atmospheric and Oceanic Science, University of Bath). But we do not know that much about what is happening in polar regions, because of their remoteness, and because of the very difficult conditions in which the measurements have to be made. Going to Svalbard in 2007, we showed how environmental processes and weather could be unravelled from noise from icebergs. People knew icebergs were very noisy, but not at frequencies as high as the ones we listened to (well into the ultrasound). So we decided to investigate this a bit more. We created artificial icebergs in the lab (that was fun), using different techniques. But nothing beats the real stuff: so more data was collected in the Arctic in 2009, in a fjord with lots of ice and in a fjord with no ice at all. Both sets of recordings were done in very flat seas, so we would have expected to have very little noise. In fact, the recording in the place full of ice was as noisy as if the sea state was 4 Beaufort (rather rough). So we knew the ice was really noisy, and we did some more measurements with the real stuff: tank experiments with small ice blocks carried back from Svalbard in 2012, field measurements in summer 2013 and this summer.

Bubbles in icebergs

Seen from up close, glacier ice contains a lot of small bubbles. When exposed to the air, they create loud noises that we can detect underwater.

Understanding the sources of noise, and putting numbers on how loud ice can be, at what frequencies, will help many other people. If glacier environments are very loud already, this might help assess how certain types of human activities will impact the environment. With the noise coming from the ice, we can measure how many small ice blocks there are (they are usually small enough to be very hard to detect with ship radar when sailing in icy waters, but large enough to create damage to the ships). With the noise coming from the glaciers, we can detect when they are melting (even if no one is nearby), how they are melting, and how much fresh water they contribute to the salty oceans (too much fresh water will kill zooplankton, near the base of the local food chain).

This is why we will listen to these different types of noise, using acoustics underwater, assessing where the noise comes from, and how we can explain specific processes (e.g. the noise created by air bubbles trapped in the ice), but also how the noise from glaciers is working.

 

11/12 July 2014 – The Polish Polar Station

  , , , ,

📥  From the field

We arrived late last night … or was it already the morning? At this latitude (77°00.0’N), the full polar day lasts from 24 April to 18 August, and we cannot see any difference between night and day. This means it is very easy to work as much as we want, or as much as we can. The first day is spent unpacking all the boxes of equipment, settling in the half-workshop we share with an oceanographer from the University of Wroclaw, and settling in the station itself.

Polish Polar Station

Entrance to the Polish Polar Station, Hornsund Fjord. In our honour, our flags have been added to the Polish and Norwegian flags. A very nice attention ...

The Polish Polar Station is named in honour of Stanisław Siedlecki, famous polar explorer and geologist, and one of its founders in 1957. It is inhabited by a permanent crew, spending 13 months on site and overlapping for 1 month with the next year’s team. With the summer complement of scientists, the station can quickly become very crowded. We are around 30 people, although it is difficult to count as some people spend the day in the field, go out for several days or weeks, or come back briefly for a day or two. The geographers are for example leaving in a few days for a hut 15 km away along the fjord, whereas some ornithologists are currently off studying birds in the mountains but will come back in a few days. On Saturday, the official transition between the outgoing and the incoming permanent teams is marked by a nice and well organised ceremony. All speeches are in Polish, of course, but the good humour and sense of welcome easily cross language barriers.

Breakfasts are at 8 am and lunches at 2 pm, both marked by the sounding of a bell which can be heard throughout the station. They are communal affairs, and everybody takes turns to help the cooks with the service (and washing up). Dinners are more informal, with no fixed times, and people come and go as they please. The communal area, next to the mess and the kitchens, is well stocked with books, music and a satellite TV. It is also the focus of other social activities, including guitar-playing and singing, sometimes interrupted by radio calls (the radio is always on: Channel 16 for coastguard and emergencies).

The science starts, at last, and after checking equipment we begin looking at the local icebergs. The closest glacier, Hansbreen or Hans glacier, is two kilometres away as the crow (or the Arctic goose) flies. Results from its melting are visible in the bay as they cross in front of our window: small and big icebergs, ranging in colour from blue to white, sometimes smudged with gravel or even small rocks (from the bottom of the glacier), and with sizes from less than a metre (growler) to larger (bergy bits: that's the official designation). The ones washed up on the closest shores are picked up for later laboratory analyses (we'll start that in earnest tomorrow).

First icebergs

Checking ice blocks washed on shore by the currents. The rifle is compulsory (because of polar bears).