Let's talk about water

Whetting appetites for Bath's water research

Tagged: WEIR

The effects of oxygen availability and turbulence on water quality in lakes and reservoirs

  , , , , , , , , ,

📥  Water, Environment and Infrastructure Resilience, WIRC @ Bath

This March sees the next talk in the monthly 'Water Colloquium' series organised by WIRC @ Bath exploring the breadth of water research being undertaken at the University of Bath.

Title: The effects of oxygen availability and turbulence on water quality in lakes and reservoirs

Speaker: Dr Lee Bryant

bryant-lee

When: 16 March2017 at 1.15pm

Where:  CB 4.8,University of Bath (Location and maps)

Abstract: Oxygen and mixing conditions in aquatic systems have a significant influence on the biogeochemical cycling of nutrients, metals, and other species at the sediment-water interface; these fluxes often control water quality in lakes and reservoirs. In an effort to counter problems with decreased water quality stemming from anoxic conditions, engineered techniques such as hypolimnetic oxygenation systems are being used more and more prevalently to increase aquatic oxygen concentrations and reduce concentrations of deleterious soluble species. Decreased oxygen levels in oceans are also becoming increasingly problematic due to enhanced anthropogenic effects and global warming. In both freshwater and marine systems, fluxes of oxygen, nutrients, and other chemical species are known to be strongly controlled not only by concentration but also by turbulence such as internal waves; however, hydrodynamics can be highly variable and effects on biogeochemical cycling and corresponding water quality are not currently understood. Based on in-situ microprofiler and aquatic eddy correlation measurements, results will be presented from three process studies focusing on (1) the effects of internal waves (e.g., seiches), (2) bioturbation, and (3) engineered hypolimnetic oxygenation / aeration on sediment-water fluxes of oxygen and manganese in lakes and reservoirs. These studies will be used to highlight the physical and chemical processes controlling biogeochemical cycling and related water quality in aquatic systems.

Contact: Please email Shan Bradley-Cong if you need any further information.

 

Assessing the element of surprise of record-breaking flood events

  , , , ,

📥  Water, Environment and Infrastructure Resilience, WIRC @ Bath

This month WIRC @ Bath is exploring the breadth of water research being undertaken at the University of Bath.

Title: Assessing the element of surprise of record-breaking flood events

Speaker: Dr Thomas Kjeldsen

28896 Dr Thomas Kjeldsen. Dept of Architecture and Civil Engineering. Faculty of Engineering Staff Portraits 3 Feb 2016. Client: Beth Jones - Faculty of Engineering

When: Thursday 15 December 2016 at 1.15pm

Where: Room 3.6, Chancellors' Building, University of Bath

Abstract: The occurrence of record-breaking flood events continuous to cause damage and disruption despite significant investments in flood defences, suggesting that these events are in some sense surprising.  This study develops a new statistical test to help assess if a flood event can be considered surprising or not.  The test statistic is derived from annual maximum series (AMS) of extreme events, and Monte Carlo simulations were used to derive critical values for a range of significance levels based on a Generalized Logistic distribution.  The method is tested on a national dataset of past events from the United Kingdom, and is found to correctly identify recent large event that have been identified elsewhere as causing a significant change in UK flood management policy.  No temporal trend in the frequency or magnitude of surprising events was identified, and no link could be established between the occurrences of surprising events and large-scale drivers.

 

Assessing the element of surprise of record-breaking flood events

  , , , , ,

📥  Water, Environment and Infrastructure Resilience, WIRC @ Bath

This March sees the next talk in the monthly 'Water Colloquium' series organised by WIRC @ Bath exploring the breadth of water research being undertaken at the University of Bath.

Title: Assessing the element of surprise of record-breaking flood events

Speaker: Dr Thomas Kjeldsen

kjeldsen-thomas

When: Tuesday 8th March 2016 at 5.15pm

Where: Room 3.15, Chancellors' Building, University of Bath (Location and maps)

Abstract: The occurrence of record-breaking flood events continuous to cause damage and disruption despite significant investments in flood defences, suggesting that these events are in some sense surprising.  This study develops a new statistical test to help assess if a flood event can be considered surprising or not.  The test statistic is derived from annual maximum series (AMS) of extreme events, and Monte Carlo simulations were used to derive critical values for a range of significance levels based on a Generalized Logistic distribution.  The method is tested on a national dataset of past events from the United Kingdom, and is found to correctly identify recent large event that have been identified elsewhere as causing a significant change in UK flood management policy.  No temporal trend in the frequency or magnitude of surprising events was identified, and no link could be established between the occurrences of surprising events and large-scale drivers.

Contact: Please email Sarah Eliot if you need any further information.

 

Project planning in Stellenbosch

  , , , , , , , , , , ,

📥  Water, Environment and Infrastructure Resilience, WISE CDT

Dr Lee Bryant, member of the Architecture and Civil Engineering Water, Environment and Infrastructure Research (WEIR) and WIRC @ Bath groups, visited the University of Stellenbosch Water Institute (near Cape Town, South Africa) on October 29 through November 4, 2015. This visit was funded by a Bath International Mobility Grant. Her visit coincided with a visit by the Director of WIRC @ Bath, Professor Jan Hofman. During this visit, Lee met with Professor Gideon Wolfaardt, the Director of the Stellenbosch Water Institute, to discuss and plan a project based on manganese (Mn) biofilm problems occurring within irrigation piping networks stemming from the Blyderivierpoort reservoir in the agriculturally driven Limpopo province, located in northern South Africa.

Blyderivierpoort Resevoir

The Blyderivierpoort reservoir has high levels of manganese (Mn) due to local geology. Consequently, Mn biofilms within irrigation pipelines are causing massive problems for farmers downstream.

(more…)